
Int J Thermophys (2008) 29:1503–1522
DOI 10.1007/s10765-008-0435-8

Plane Strain Deformation in Generalized Thermoelastic
Diffusion

Nidhi Sharma · Rajneesh Kumar · Paras Ram

Received: 10 May 2007 / Accepted: 7 April 2008 / Published online: 13 May 2008
© Springer Science+Business Media, LLC 2008

Abstract The present investigation is concerned with plane strain deformation in
homogeneous isotropic generalized thermoelastic diffusion subjected to a normal
force, thermal source, and chemical potential source. Laplace and Fourier transform
techniques are employed to solve the problem. The integral transform have been
inverted by using a numerical technique to obtain the displacements, stresses, temper-
ature distribution, and chemical potential distribution. The numerical results of these
quantities are illustrated graphically to depict the response of various sources in the
theories of thermoelastic diffusion and thermoelasticity for a particular model. Some
particular cases have been deduced from the present investigation.

Keywords Chemical potential source · Generalized thermoelastic diffusion ·
Laplace and Fourier transforms · Mechanical force · Thermal source

1 Introduction

The classical theory of dynamic thermoelasticity takes into account the coupling
between temperature and strain fields. However, the dynamic coupled theory involves
a contradiction that thermal waves propagate at an infinite velocity. The theory of gen-
eralized thermoelasticity has been developed in an attempt to eliminate the paradox of
the infinite velocity of thermal propagation. Therefore, the generalized theory is the
dynamic coupled thermoelasticity which includes the time needed for the acceleration
of a thermal wave.
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There are two different theories of generalized thermoelasticty: the first is proposed
by Lord and Shulman [1], and the second is proposed by Green and Lindsay [2]. The
theory of Lord and Shulman (L–S theory) is based on the modified Fourier law of heat
conduction and assumes one relaxation time whereas the theory of Green and Lindsay
(G–L theory) uses a modified energy equation, constitutive equations and allows two
relaxation times.

The study of diffusion phenomena is of great interest due to its many applications in
geophysics and industrial applications. Diffusion can be defined as the random walk
of an ensemble of particles from regions of high concentration to regions of lower
concentration. In integrated circuit fabrication, diffusion is used to introduce dopants
in controlled amounts into the semiconductor substrate. In particular, diffusion is used
to form the base and emitter in bipolar transistors, to form integrated resistors, to form
the source/drain regions in metal oxide semiconductor (MOS) transistors, and to dope
poly-silicon gates in MOS transistors. The study of the phenomenon of diffusion is
used to improve the conditions of oil extractions (seeking ways of more efficiently
recovering oil from oil deposits); the process of thermodiffusion can be used for more
efficient extraction of oil from oil deposits.

Thermodiffusion in an elastic solid is due to coupling of the fields of temperature,
mass diffusion, and strain. Heat and mass exchange with the environment during ther-
modiffusion in an elastic solid. Using the coupled thermoelastic model, Nowacki [3–6]
developed the theory of thermoelastic diffusion and discussed dynamical problems of
diffusion in solids. Olesiak and Pyryev [7] discussed a coupled quasi-stationary prob-
lem of thermodiffusion for an elastic cylinder. They studied the influences of cross
effects arising from the coupling of the fields of temperature, mass diffusion, and
strain. Due to these cross effects, the thermal excitation results in an additional mass
concentration and the mass concentration generates the additional field of temperature.
Genin and Xu [8] investigated a problem on thermoelastic plastic metals with mass
diffusion.

Sherief et al. [9] developed the theory of generalized thermoelastic diffusion with
one relaxation time, which allows finite speeds of propagation of waves. Sherief and
Saleh [10] investigated a half-space problem in the theory of generalized thermoelastic
diffusion with one relaxation time. Singh [11,12] discussed the reflection phenomena
of waves from a free surface of an elastic solid with generalized thermodiffusion.
Recently, Aouadi [13] studied thermoelastic–diffusion interactions in an infinitely
long solid cylinder subjected to thermal shock on its surface with a permeating sub-
stance. Aouadi [14] investigated the problem of a thermoelastic half-space with a
permeating substance in contact with the bounding plane in the context of the the-
ory of generalized thermoelastic diffusion with one relaxation time and with variable
electrical and thermal conductivities.

The objective of the present investigation is to determine the components of dis-
placement, stress, temperature distribution, and chemical potential distribution in an
isotropic homogeneous elastic solid with generalized thermoelastic diffusion subjected
to a normal force, thermal source, and chemical potential source.
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2 Basic Equations

Following Lord and Shulman [1], Green and Lindsay [2], and Sherief et al. [9], the gov-
erning equations for an isotropic homogeneous elastic solid with generalized thermo-
elastic diffusion in the absence of body forces and heat sources include the constitutive
relations,

ti j = 2µei j + δi j [λekk − β1(θ + τ1θ̇ )− β2(C + τ 1Ċ)], (1)

P = −β2ekk + b(C + τ 1Ċ)− a(θ + τ1θ̇ ), (2)

the equation of motion,

µui, j j + (λ+ µ)u j,i j − β1(θ + τ1θ̇ ),i − β2(C + τ 1Ċ),i = ρüi , (3)

the equation of heat conduction,

ρCE (θ̇ + τ0θ̈ )+ β1T0(ė +�τ0ë)+ aT0(Ċ + γ C̈) = K θ,i i , (4)

and the equation of mass diffusion,

Dβ2e,i i + Da(θ + τ1θ̇ ),i i + (Ċ +�τ 0C̈)− Db(C + τ 1Ċ),i i = 0, (5)

where

ei j = 1

2
(ui, j + u j,i ) (i, j = 1, 2, 3),

β1 = (3λ+ 2µ)αt , β2 = (3λ+ 2µ)αc,

λ, µ are Lame’s constants, αt is the coefficient of linear thermal expansion, and αc is
the coefficient of linear diffusion expansion. θ = T − T0, T is the absolute tempera-
ture, and T0 is the temperature of the medium in its natural state assumed to be such
that |θ/T0| < 1. ti j ’s are the components of the stress tensor, ui ’s are the components
of the displacement vector, ρ is the density assumed to be independent of time, ei j ’s
are the components of the strain tensor, and e = ekk . P is the chemical potential per
unit mass, C is the concentration, CE is the specific heat at constant strain, and K
is the coefficient of thermal conductivity; D is the thermoelastic diffusion constant.
τ0, τ1 are the thermal relaxation times, which ensure that the heat conduction equation,
satisfied by the temperature θ , will predict finite speeds of heat propagation. τ 0, τ 1 are
the diffusion relaxation times which ensure that the equation, satisfied by the concen-
tration C , will also predict finite speeds of propagation of matter from one medium
to another. The constants a and b are measures of thermoelastic diffusion effects and
diffusive effects, respectively. The superposed dots denote derivatives with respect to
time. δij is the Kronecker delta.

For the L–S model, τ1 = 0, τ 1 = 0,� = 1, γ = τ0. The governing equations
in the L–S model are the same as given by Sherief et al. [9]. For the G–L model,
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τ1 > 0, τ 1 > 0,� = 0, γ = τ 0. The thermal relaxation times, τ0 and τ1, satisfy the
inequality τ1 ≥ τ0 ≥ 0 for the G–L model. The diffusion relaxation times, τ 0 and τ 1,
also satisfy the inequality τ 1 ≥ τ 0 ≥ 0 for the G–L model.

3 Formulation and Solution of the Problem

We consider an isotropic homogeneous elastic solid with generalized thermoelastic
diffusion in the undeformed state at temperature T0. We introduce the rectangular
Cartesian coordinate system (x, y, z) which has its origin on the surface z = 0 with
the z-axis pointing normal to the medium. A concentrated, uniformly and linearly
distributed normal force or thermal source, or chemical potential source, is assumed
to be acting at the origin of the rectangular Cartesian coordinates.

For a two-dimensional problem, we assume

�u = (u1, 0, u3) (6)

The initial and regularity conditions are given by

u1(x, z, 0) = 0 = u̇1(x, z, 0),
u3(x, z, 0) = 0 = u̇3(x, z, 0),

θ(x, z, 0) = 0 = θ̇ (x, z, 0),

C(x, z, 0) = 0 = Ċ(x, z, 0)

P(x, z, 0) = 0 = Ṗ(x, z, 0) for z ≥ 0,−∞ < x < ∞, (7)

u1(x, z, t) = u3(x, z, t) = θ(x, z, t)

= C(x, z, t) = P(x, z, t) = 0 for t > 0 when z → ∞. (8)

To facilitate the solution, the following dimensionless quantities are introduced:

x ′ = ω∗
1

c1
x, z′ = ω∗

1

c1
z, t ′ = ω∗

1 t, u′
1 = ω∗

1

c1
u1, u′

3 = ω∗
1

c1
u3,

t ′33 = t33

β1T0
, t ′31 = t31

β1T0
, C ′ = β2C

ρc2
1

, θ ′ = β1

ρc2
1

θ, γ ′ = ω∗
1γ,

τ ′
1 = ω∗

1τ1, τ ′
0 = ω∗

1τ0, τ 1′ = ω∗
1τ

1, τ 0′ = ω∗
1τ

0, P ′ = P

β2
,

m′ = ω∗
1

c1
m. (9)

where

c2
1 = λ+ 2µ

ρ
, ω∗

1 = ρCE c2
1

K
.
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The displacement components, u1(x, z, t) and u3(x, z, t), may be written in terms of
the potential functions, φ(x, z, t) and ψ(x, z, t), as

u1 = ∂φ

∂x
− ∂ψ

∂z
, u3 = ∂φ

∂z
+ ∂ψ

∂x
. (10)

Using Eqs. 6, 9, and 10, Eqs. 3–5 recast into the following form (after suppressing the
primes):

δ∇2ψ = ∂2ψ

∂t2 , (11)

∇2φ −
(

1 + τ1
∂

∂t

)
θ −

(
1 + τ 1 ∂

∂t

)
C = ∂2φ

∂t2 , (12)

∇2θ =
(

1 + τ0
∂

∂t

)
∂θ

∂t
+ ε1

(
1 +�τ0

∂

∂t

)
∂

∂t
∇2φ + ε1a1

(
1 + γ

∂

∂t

)
∂C

∂t
,

(13)

∇4φ + a1

(
1 + τ1

∂

∂t

)
∇2θ − ε2

(
1 + τ 1 ∂

∂t

)
∇2C

+ε2a2

(
1 +�τ 0 ∂

∂t

)
∂C

∂t
= 0, (14)

where

δ = µ

λ+ 2µ
, ε1 = β2

1 T0

ρCE (λ+ 2µ)
, a1 = a(λ+ 2µ)

β1β2
,

ε2 = b(λ+ 2µ)

β2
2

, a2 = 1

bDη
, η = ρCE

K
. (15)

Applying the Laplace and Fourier transformations defined by

f̄ (x, z, s) =
∞∫

0

f (x, z, t)e−st dt, (16)

f̂ (ξ, z, s) =
∞∫

−∞
f̄ (x, z, s)eiξ x dx, (17)

to Eqs. 11–14, then eliminating φ̂, θ̂ , Ĉ, and ψ̂ from the resulting expression, we
obtain
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(
d6

dz6 + Q
d4

dz4 + N
d2

dz2 + I

)
(φ̂, θ̂ , Ĉ) = 0, (18)

(
d2

dz2 − λ2
4

)
ψ̂ = 0, (19)

where

Q = 1

E
[F − 3ξ2 E],

N = 1

E
[G − 2Fξ2 + 3ξ4 E],

I = 1

E
[Fξ4 − Gξ2 + H − Eξ6],

λ2
4 = ξ2 + s2

δ
. (20)

and

E = [−ε2 + 1](1 + τ 1s),

F = sε2(1 + τ 1s)
[
a2
(1+�τ 0s)
(1+τ 1s)

+ (1 + τ0s)+ s
]

+ ε1a1s(1 + γ s)(1 + τ1s) [1 + a1]

+ ε1s(1 + τ1s)(1 + τ 1s)(1 +�τ0s) [ε2 + a1] − s(1 + τ0s)(1 + τ 1s)

G = −
{

s2ε2a2(1 +�τ 0s) [(1 + τ0s)+ s + ε1(1 + τ1s)(1 +�τ0s)]

+ s3(1 + τ 1s)
[
ε2(1 + τ0s)+ ε1a2

1(1 + γ s)
]

}
,

H = s4ε2a2(1 + τ0s)(1 +�τ 0s). (21)

The roots of Eq. 18 are ±λl (l = 1, 2, 3), and the roots of Eq. 19 are ±λ4. Making
use of the radiation condition that φ̂, θ̂ , Ĉ , and ψ̂ → 0 as z → ∞, the solutions of
Eqs. 18 and 19 may be written as

φ̂ = A1e−λ1z + A2e−λ2z + A3e−λ3z, (22)

θ̂ = d1 A1e−λ1z + d2 A2e−λ2z + d3 A3e−λ3z, (23)

Ĉ = e1 A1e−λ1z + e2 A2e−λ2z + e3 A3e−λ3z, (24)

ψ̂ = A4e−λ4z, (25)

where

dl = P∗λ2
l + Q∗

R∗λ2
l + S∗ , el = U∗λ4

l + V ∗λ2
l + W ∗

X∗λ2
l + T ∗ , (l = 1, 2, 3),

P∗ = 1

1 + τ 1s
+ (1 +�τ0s)

a1(1 + γ s)
, U∗ = (1 + a1),
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Q∗ = −
[
ξ2 + s2

1 + τ 1s
+ ξ2(1 +�τ0s)

a1(1 + γ s)

]
, V ∗ = −(2(1 + a1)ξ

2 + a1s2),

R∗ = 1

ε1a1s(1 + γ s)
, W ∗ = (1 + a1)ξ

4 + a1s2ξ2,

S∗ = − 1

ε1a1s(1 + γ s)
(ξ2 + (1 + τ0s)s)+ 1 + τ1s

1 + τ 1s
,

X∗ = a1(1 + τ 1s)+ ε2(1 + τ 1s),

T ∗ = −{[a1(1 + τ 1s)+ ε2(1 + τ 1s)]ξ2 + sε2a2(1 +�τ 0s)}, (26)

with Al (l = 1, 2, 3, 4) being arbitrary constants.

4 Applications

4.1 Instantaneous Mechanical Force on the Surface of Half Space

The boundary conditions in this case on the surface z = 0 are

(i) t33(x, z, t) = −P1ψ1(x)δ(t), (i i) t31(x, z, t) = 0,

(i i i) θ(x, z, t) = 0, (iv) P(x, z, t) = 0,
(27)

where δ(t) is the Dirac delta function, ψ1(x) specifies a source distribution function
along the x-axis, and P1 is the magnitude of the applied force.

Making use of Eqs. 1, 2, 9, and 10, along with P ′
1 = P1

β1T0
in the boundary conditions

(see Eq. 27) and applying the transforms defined by Eqs. 16 and 17 and substituting the
values of φ̂, θ̂ , Ĉ, ψ̂ from Eqs. 22–25 in the resulting equations, we obtain expressions
for components of the displacement, stress, temperature distribution, and chemical
potential distribution as

û1 = 1

�
{P1ψ̂1(ξ)[(−iξ)(�1e−λ1z −�2e−λ2z +�3e−λ3z)+ λ4�4e−λ4z]},

(28)

û3 = −1

�
{P1ψ̂1(ξ)[λ1�1e−λ1z − λ2�2e−λ2z + λ3�3e−λ3z + iξ�4e−λ4z]},

(29)

t̂33 = 1

�
{P1ψ̂1(ξ)[s1�1e−λ1z − s2�2e−λ2z + s3�3e−λ3z + s4�4e−λ4z]}, (30)

t̂31 = 1

�
{P1ψ̂1(ξ)[λ1�1e−λ1z − λ2�2e−λ2z + λ3�3e−λ3z − m1�4e−λ4z]},

(31)

θ̂ = 1

�
{P1ψ̂1(ξ)[d1�1e−λ1z − d2�2e−λ2z + d3�3e−λ3z]}, (32)

P̂ = 1

�
{P1ψ̂1(ξ)[t1�1e−λ1z − t2�2e−λ2z + t3�3e−λ3z]}, (33)
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where

� = {−[s4λ1 + m1s1](d2t3 − d3t2)+ [s4λ2 + m1s2](d1t3 − d3t1)

− [s4λ3 + m1s3] (d1t2 − d2t1)}

�1 = m1(d2t3 − d3t2), �2 = m1(d1t3 − d3t1), �3 = m1(d1t2 − d2t1),

�4 = [λ1(d2t3 − d3t2)− λ2(d1t3 − d3t1)+ λ3(d1t2 − d2t1)],
sl = b1λ

2
l − b1(1 + τ1s)dl − b1(1 + τ 1s)el − b2iξ, (l = 1, 2, 3),

s4 = (iξb1 + b2)λ4,

tl = ξ2 − λ2
l + ε2(1 + τ 1s)el − a1(1 + τ1s)dl , (34)

4.2 Thermoelastic Interaction Due to Thermal Source

When the plane boundary is free from stress and chemical potential, and is subjected
to a thermal point source, the boundary conditions on the surface z = 0 are

(i) t33(x, z, t) = 0, (i i) t31(x, z, t) = 0,

(i i i) θ(x, z, t) = P3ψ1(x)δ(t), (iv) P(x, z, t) = 0,
(35)

where δ(t) is the Dirac delta function, ψ1(x) is the source distribution function along
the x-axis, and P3 is the constant temperature applied on the boundary.

With the use of Eqs. 1, 2, 9, 10, 16, and 17, along with P ′
3 = β1

ρc2
1

P3 and boundary

conditions of Eq. 35, the corresponding expressions for components of the displace-
ment, stress, temperature distribution, and chemical potential distribution are given by
Eqs. 28–33 with �l replaced by �∗

l (l = 1, 2, 3, 4) and P1 replaced by P3 in Eq. 34,
where

�∗
1 = m1(s2t3 − s3t2)+ s4(λ2t3 − λ3t2),

�∗
2 = m1(s1t3 − s3t1)+ s4(λ1t3 − λ3t1),

�∗
3 = m1(s1t2 − s2t1)+ s4(λ1t2 − λ2t1),

�∗
4 = −[s1(λ2t3 − λ3t2)− s2(λ1t3 − λ3t1)+ s3(λ1t2 − λ2t1)], (36)

4.3 Chemical Potential Source on the Surface of Half-Space

Here the plane boundary is stress free, isothermal and is subjected to a chemical
potential source; therefore, the boundary conditions on the surface z = 0 are

(i) t33(x, z, t) = 0, (i i) t31(x, z, t) = 0,
(i i i) θ(x, z, t) = 0, (iv) P(x, z, t) = P4ψ1(x)δ(t),

(37)
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where δ(t) is the Dirac delta function, ψ1(x) is the source distribution function along
the x-axis, and P4 is the constant potential applied on the boundary.

Adopting the same procedure as in the case of the mechanical force and thermal
source, along with P ′

4 = P4
β2

and using the boundary conditions of Eq. 37, the expres-
sions for the components of the displacement, stress, temperature distribution, and
chemical potential distribution are given by Eqs. 28–33 by replacing �l with �∗∗

l
(l = 1, 2, 3, 4) and P1 with P4 in Eq. 34 where

�∗∗
1 = −[m1(s2d3 − s3d2)+ s4(λ2d3 − λ3d2),

�∗∗
2 = −[m1(s1d3 − s3d1)+ s4(λ1d3 − λ3d1)],

�∗∗
3 = −[m1(s1d2 − s2d1)+ s4(λ1d2 − λ2d1)],

�∗∗
4 = s1(λ2d3 − λ3d2)− s2(λ1d3 − λ3d1)+ s3(λ1d2 − λ2d1), (38)

Case I: Concentrated Normal Force/Thermal Point Source/Chemical Potential Point
Source

The solution due to the concentrated normal force/thermal point source/chemical
potential point source on the half-space is obtained by setting

ψ1(x) = δ(x), (39)

in Eqs. 27, 35, and 37. Applying the Laplace and Fourier transforms defined by Eqs.
16 and 17 on Eq. 39, gives

ψ̂1(ξ) = 1. (40)

Case II: Distributed Sources
(a) Uniformly distributed normal force/uniformly distributed thermal source/
uniformly distributed chemical potential source.

The solution due to a uniformly distributed normal force/uniformly distributed ther-
mal source/uniformly distributed chemical potential source applied on the half-space
is obtained by setting

ψ1(x) =
{

1 if |x | ≤ m,
0 if |x | > m,

(41)

in Eqs. 27, 35, and 37. The Laplace and Fourier transforms with respect to the pair
(x, ξ) for the case of a uniform strip load of unit amplitude and width 2m applied at the
origin of the coordinate system (x = z = 0) in dimensionless form after suppressing
the primes becomes

ψ̂1(ξ) =
[

2 sin

(
ξc1m

ω∗
1

)/
ξ

]
, ξ = 0 (42)
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(b) Linearly distributed normal force/linearly distributed thermal source/linearly
distributed chemical potential source.

The solution due to the linearly distributed normal force/linearly distributed ther-
mal source/linearly distributed chemical potential source applied on the half-space
surface is obtained by setting

ψ1(x) =
{

1 − |x |
m if |x | ≤ m,

0 if |x | > m,
(43)

in Eqs. 27, 35, and 37 where 2m is the width of the strip load. The Laplace and Fourier
transform in the case of a linearly distributed normal force/thermal source/potential
source applied at the origin on the system in dimensionless form is

ψ̂1(ξ) = 2[1 − cos(ξc1m/ω∗
1)]

ξ2c1m/ω∗
1

. (44)

The expressions for displacements, stresses, temperature distribution, and chemical
potential distribution can be obtained for a concentrated normal force/thermal point
source/chemical potential point source, and uniformly and linearly distributed normal
forces/thermal sources/chemical potential sources by replacing ψ̂1(ξ) from Eqs. 40,
42, and 44, respectively, in Eqs. 28–33.

5 Particular Cases

(a) Neglecting the diffusion effect (i.e., β2 = b = a = 0), we obtain the correspond-
ing expressions for displacements, stresses, temperature distributions given by Eqs.
28–33 in the thermoelastic half-space as

û1 = 1

�∗ {P1ψ̂1(ξ)[(−iξ)(−�′
1e−λ1z +�′

2e−λ2z)− λ4�
′
3e−λ4z]}, (45)

û3 = −1

�∗ {P1ψ̂1(ξ)[−λ1�
′
1e−λ1z + λ2�

′
2e−λ2z − iξ�′

3e−λ4z]}, (46)

t̂33 = 1

�∗ {P1ψ̂1(ξ)[−s∗
1�

′
1e−λ1z + s∗

2�
′
2e−λ2z − s4�

′
3e−λ4z]}, (47)

t̂31 = 1

�∗ {P1ψ̂1(ξ)[−λ1�
′
1e−λ1z + λ2�

′
2e−λ2z + m1�

′
3e−λ4z]}, (48)

θ̂ = 1

�∗ {P1ψ̂1(ξ)[−d1�
′
1e−λ1z + d2�

′
2e−λ2z]}, (49)
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where

�∗ = [s4(λ1d2 − λ2d1)+ m1(s
∗
1 d2 − s∗

2 d1)],
�′

1 = m1d2,�
′
2 = m1d1,�

′
3 = (λ1d2 − λ2d1),

s∗
l = b1λ

2
l − b1(1 + τ1s)dl − b2iξ, (l = 1, 2)

s4 = (iξb1 + b2)λ4. (50)

The above expressions yield the corresponding expressions for the concentrated,
uniformly and linearly distributed normal force by replacing ψ̂1(ξ) from Eqs. 40, 42,
and 44, respectively, in Eqs. 45–49.
(b) Making use of the values of ψ̂1(ξ) from Eqs. 40, 42, and 44 and by replacing
�′

l with �′′
l (l = 1, 2, 3) as given below, we obtain the expressions for displace-

ments, stresses, and temperature distributions in a thermoelastic medium, due to a
concentrated, uniformly and linearly distributed thermal point source, where

�′′
1 = m1s∗

2 + s4λ2, �′′
2 = m1s∗

1 + s4λ1, �′′
3 = s∗

2λ1 − s∗
1λ2. (51)

6 Special Cases

(a) By putting τ1 = 0, τ 1 = 0,� = 1, γ = τ0 in Eqs. 28–33 and 45–49, we obtain
the corresponding expressions of thermoelastic diffusion and thermoelasticity
for the L–S theory.

(b) For the G–L theory, we obtain the expressions of thermoelastic diffusion and
themoelasticity by substituting � = 0, γ = τ 0, and τ1 > 0, τ 1 > 0 in Eqs.
28–33 and 45–49.

(c) For the case of coupled thermoelasticity, the thermal relaxation times vanish, i.e.,
τ0 = τ 0 = τ1 = τ 1 = 0 and consequently, we obtain the corresponding expres-
sions of thermoelastic diffusion and thermoelasticity by putting these values in
Eqs. 28–33 and 45–49.

7 Inversion of the Transforms

To obtain the solution of the problem in the physical domain, we must invert the trans-
forms in Eqs. 28–33 and 45–49 for the L–S, G–L, and C–T theories. These expressions
are functions of z, the parameters of Laplace and Fourier transforms s and ξ , respec-
tively, and hence, are of the form f̂ (ξ, z, s). To obtain the function f (x, z, t) in the
physical domain, first we invert the Fourier transform using

f̄ (x, z, s) = 1

2π

∞∫
−∞

e−iξ x f̂ (ξ, z, s)dξ = 1

π

∞∫
0

(cos(ξ x) fe − i sin(ξ x) f0)dξ,

(52)
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where fe and f0 are, respectively, even and odd parts of the function f̂ (ξ, z, s). Thus,
Eq. 52 gives us the Laplace transform f̄ (x, z, s) of the function f (x, z, t). Following
Honig and Hirdes [15], the Laplace transform function f̄ (x, z, s)can be inverted to
f (x, z, t).

The last step is to calculate the integral in Eq. 52. The method for evaluating this
integral is described by Press et al. [16], which involves the use of Romberg’s inte-
gration with adaptive step size. This also uses the results from successive refinements
of the extended trapezoidal rule followed by extrapolation of the results to the limit
when the step size tends to zero.

8 Numerical Results and Discussion

Following Sherief and Saleh [10], copper material is chosen for the purpose of numer-
ical calculation.
T0 = 293 K, ρ = 8954 kg ·m−3, CE = 383.1 J ·kg−1 · K−1, αt = 1.78 × 10−5 K−1

αc = 1.98 × 10−4 m3 · kg−1, K = 386 W ·m−1 · K−1, λ = 7.76 × 1010 kg ·m−1 · s−2

µ=3.86×1010 kg ·m−1 · s−2, D = 0.85×10−8 kg · s ·m−3,α=1.2×104 m2 · s−2 · K−1

b = 0.9 × 106 m5 · kg−1 · s−2

The values of the dimensionless relaxation times, τ0 = 0.02, τ 0 = 0.2 have been
taken from Sherief and Saleh [10] and the values of τ1, τ

1 are taken proportionally of
comparable magnitude as τ1 = 0.03, τ 1 = 0.3.

The values of normal displacement u3, normal stress t33, temperature distribution θ ,
and chemical potential distribution P for thermoelastic diffusion (TED) and thermo-
elasticity (TE) have been studied for a normal force/thermal source/chemical potential
source at time t = 0.5. The variations of the components with distance x are shown:
(a) solid line for TED and solid line with center symbol ‘circle’ for TE for L–S theory,
(b) small dashed line for TED and small dashed line with center symbol ‘triangle’ for
TE for G–L theory, and (c) long dashed line for TED and long dashed line with center
symbol ‘square’ for TE for C–T theory. The variations are shown in Figs. 1–12. The
computations are carried out in the range 0 ≤ x ≤ 10.

8.1 Mechanical Sources on the Surface of Half-Space

8.1.1 Concentrated Force

Figure 1 shows the variation of normal displacement u3 with distance x , which for
TED has converging oscillatory behavior for L–S, G–L, and C–T theories. The val-
ues of normal displacement for TE have similar behavior as TED for both L–S and
C–T theories whereas for G–L theory, the values of u3 increase sharply in the range
0 ≤ x ≤ 2.5, 7 ≤ x ≤ 10 and decrease outside this range.

Figure 2 shows the variation of normal stress t33 with distance x , which for TED
has converging oscillatory behavior for the L–S theory whereas it has an oscillatory
behavior for both G–L and C–T theories in the range 0 ≤ x ≤ 10. The values of
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Fig. 1 Variation of normal displacement u3 with distance x (concentrated normal force)
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Fig. 2 Variation of normal stress t33 with distance x (concentrated normal force)
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Fig. 3 Variation of temperature distribution θ with distance x (concentrated normal force)
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Fig. 4 Variation of chemical potential distribution P with distance x (concentrated normal force)
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Fig. 5 Variation of normal displacement u3 with distance x (uniformly distributed thermal source)
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Fig. 6 Variation of normal stress t33 with distance x (uniformly distributed thermal source)
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Fig. 7 Variation of temperature distribution θ with distance x (uniformly distributed thermal source)
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Fig. 8 Variation of chemical potential distribution P with distance x (uniformly distributed thermal source)
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Fig. 9 Variation of normal displacement u3 with distance x (uniformly distributed chemical potential
source)
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Fig. 10 Variation of normal stress t33 with distance x (uniformly distributed chemical potential source)
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Fig. 11 Variation of temperature distribution θ with distance x (uniformly distributed chemical potential
source)
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Fig. 12 Variation of chemical potential distribution P with distance x (uniformly distributed chemical
potential source)
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the normal stress for TE have converging oscillatory behavior for both L–S and G–L
theories whereas for the C–T theory, the values of t33 increase sharply in the range
0 ≤ x ≤ 2, decrease in the range 2.2 ≤ x ≤ 4, and as x increases further, have an
oscillatory behavior.

Figure 3 shows the variation of the temperature distribution θ with distance x , which
for TED has an oscillatory behavior for L–S, G–L, and C–T theories. The values of
the temperature distribution for TE are very close to each other for both L–S and C–T
theories, but for G–L theory, the values of θ decrease sharply in the range 0 ≤ x ≤ 2,
increase in the range 2.2 ≤ x ≤ 4 and then become very close to L–S and C–T theories.

Figure 4 shows the variation of the chemical potential distribution P with distance
x , which for TED has an oscillatory behavior in the range 0 ≤ x ≤ 10 for both L–S
and C–T theories. The values of the chemical potential increase sharply in the ranges,
0 ≤ x ≤ 3 and 0 ≤ x ≤ 9, and decrease sharply outside this range for the G–L theory.

8.2 Thermoelastic Interaction Due to Thermal Sources

8.2.1 Uniformly Distributed Thermal Source

Figure 5 shows the variation of the normal displacement u3 with distance x , which
for TED has an oscillatory behavior for L–S, G–L, and C–T theories. The values of
the normal displacement for TE are very close to each other for L–S and C–T theories
whereas for the G–L theory, the values of u3 decrease in the range 0 ≤ x ≤ 3 and
then have an oscillatory behavior.

Figure 6 shows the variation of the normal stress t33 with distance x , which for
TED has an oscillatory behavior for L–S and G–L theories, whereas for the C–T the-
ory, it has an oscillatory behavior in the range 0 ≤ x ≤ 5, increases in the range
5.1 ≤ x ≤ 7, 9 ≤ x ≤ 10, and decreases in the range 7.1 ≤ x ≤ 9. The values of the
normal stress for TE have an oscillatory behavior (close to each other) for L–S, G–L,
and C–T theories.

Figure 7 shows the variation of the temperature distribution θ with distance x , which
for TED has an oscillatory behavior for L–S and C–T theories, whereas for the G–L
theory, it increases sharply in the range 0 ≤ x ≤ 3, 6 ≤ x ≤ 8 and decreases sharply
outside this range. The values of the temperature distribution for TE increase in the
range 0 ≤ x ≤ 2, decrease in the range 2.5 ≤ x ≤ 4 and, as x increases, have an
oscillatory behavior for L–S, G–L, and C–T theories.

Figure 8 shows the variation of the chemical potential distribution P with distance
x , which for TED increases sharply in the range 0 ≤ x ≤ 2 and then has an oscilla-
tory behavior for the G–L theory whereas it has an oscillatory behavior in the range
0 ≤ x ≤ 10 for both L–S and C–T theories.

8.3 Chemical Potential Source on the Surface of Half-Space

8.3.1 Uniformly Distributed Chemical Potential Source

Figures 9–12 show the variation of the normal displacement u3, normal stress t33, and
temperature distribution with distance x , which for TED has an oscillatory behavior
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in the range 0 ≤ x ≤ 10 for L–S, G–L, and C–T theories, but their magnitudes of
oscillation are different.

9 Conclusions

The effect of diffusion plays an important role in the study of the deformation of
an elastic body. It is observed that as x diverges from the point of application of a
source, the components of normal displacement, stress and chemical potential dis-
tribution follow an oscillatory path. The salient feature of these results is that the
displacement field, the stresses, and temperature distribution contain new terms char-
acterizing the influence of the thermodiffusion. As the disturbance travels through
different constituents of the medium, it encounters sudden changes, resulting in an
inconsistent/non-uniform pattern of curves. The trend of curves exhibits the proper-
ties of thermal diffusivity of the medium and satisfies the requisite condition of the
problem. The results of this problem are very useful in the two-dimensional problem
of dynamic response due to various sources of thermoelastic diffusion which have
various geophysical and industrial applications.
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